Search results for "Bilateral filter"
showing 3 items of 3 documents
Three-Dimensional Integral-Imaging Display From Calibrated and Depth-Hole Filtered Kinect Information
2016
We exploit the Kinect capacity of picking up a dense depth map, to display static three-dimensional (3D) images with full parallax. This is done by using the IR and RGB camera of the Kinect. From the depth map and RGB information, we are able to obtain an integral image after projecting the information through a virtual pinhole array. The integral image is displayed on our integral-imaging monitor, which provides the observer with horizontal and vertical perspectives of big 3D scenes. But, due to the Kinect depth-acquisition procedure, many depthless regions appear in the captured depth map. These holes spread to the generated integral image, reducing its quality. To solve this drawback we …
Multispectral image denoising with optimized vector non-local mean filter
2016
Nowadays, many applications rely on images of high quality to ensure good performance in conducting their tasks. However, noise goes against this objective as it is an unavoidable issue in most applications. Therefore, it is essential to develop techniques to attenuate the impact of noise, while maintaining the integrity of relevant information in images. We propose in this work to extend the application of the Non-Local Means filter (NLM) to the vector case and apply it for denoising multispectral images. The objective is to benefit from the additional information brought by multispectral imaging systems. The NLM filter exploits the redundancy of information in an image to remove noise. A …
Full-parallax 3D display from the hole-filtered depth information
2015
In this paper we introduce an efficient hole-filling algorithm for synthetic generation of microimages that are displayed on an integral imaging monitor. We apply the joint bilateral filter and the median filter to the captured depth map. We introduce in any step of the iterative algorithm with the data from a new Kinect capture. As a result, this algorithm can improve the quality of the depth maps and remove unmeasured depth holes effectively. This refined depth information enables to create a tidy integral image, which can be projected into an integral imaging monitor. In this way the monitor can display 3D images with continuous views, full parallax and abundant 3D reconstructed scene fo…